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Equilibrium Superradiance in a Bose Gas 

M. D. Girardeau 1 

Received May 3, 1977 

A model of free 4He atoms interacting with radiation exhibits an equilib- 
rium phase transition in which the atomic ground-state Bose condensation 
is coupled to condensations of virtual photons and virtually excited atoms 
of the same macroscopic wavelength. The condensed phase has a twofold 
polarization degeneracy. It is suggested that this might furnish a mechanism 
for a discrete symmetry-related phase degeneracy of superfluid liquid 4He 
required to explain the A transition according to Tisza's generalized Gibb- 
sian thermodynamics. A more realistic model would require inclusion of 
repulsive interactions. 

KEY W O R D S :  Equilibrium superradiance; Bose condensation; liquid 
helium-4, 

Lambda-type specific heat anomalies (logarithmic specific heat singularities) 
are associated with order-disorder transitions characterized by the existence 
at temperatures T < Ta of degenerate phases differing only in some discrete 
symmetry parameter. Tisza has presented~l~ a generalized form of Gibbsian 
thermodynamics which implies that a A transition can only arise from the 
onset of  such a discrete phase degeneracy. He concluded that such a de- 
generacy must be present in the superfluid phase of liquid 4He. We wish to 
propose a possible mechanism for such a degeneracy. 

We start from the observation that helium atoms possess degenerate 
excited states. Might this induce a related degeneracy of the many-atom 
ground state ? The atomic excited states are usually not included explicitly 
in theories of liquid ~He because their excitation energies are so high 
(,,~ 105 K). Note, however, that virtually excited atomic states are responsible 
for the fact that the system is a liquid, since the attractive van der Waals 

Supported in part by the National Science Foundation, Grant DMR76-17467. 
1 Institute of Theoretical Science and Department of Physics, University of Oregon, 

Eugene, Oregon. 

207 

0022-4715/78/0200-0207505.00]0 �9 1978 Plenum Publishing Corporation 



208 M . D .  Girardeau 

interaction (London dispersion force) results from correlated virtual dipole 
interactions. Might some nonzero fraction of the virtual atom-radiation 
interactions in superfluid liquid 4He take place in a coherent fashion, requiring 
an explicit treatment of the corresponding photon mode ? 

There exist models of "equilibrium superradiance," e.g., the Dicke 
model, (2-5) which exhibit phase transitions in which the low-temperature 
phase contains a macroscopic number of photons in a single mode (Bose con- 
densation of photons). In equilibrium these condensed photons are virtual 
and do not result in radiation in excess of thermal radiation. Nevertheless, 
they share with a real lasing mode the properties of coherence and polariza- 
tion, and lead to a coupling of polarization of virtually excited atomic states 
through their coupling with the polarized photon mode. 

Might such a phenomenon be a candidate for a discrete, symmetry- 
related degeneracy of superfluid liquid 4He as required by the Tisza theory ? 
Such a possibility is suggested by the absence of Doppler broadening of 
virtual photons emitted and absorbed by atoms in the zero-momentum 
ground-state condensate; this might favor the formation of an associated 
virtual photon condensate as well as a condensate of virtually excited atoms. 

The Hamiltonian of a system of 4He atoms interacting with each other 
and with the quantized radiation field can be derived from first principles by 
application of an appropriate unitary transformation (<v~ to the Harniltonian 
of a system of nuclei, electrons, and radiation in Coulomb gauge. The 
resultant Hamiltonian is an infinite series representing all physically possible 
processes. The atom-radiation part starts with terms representing emission, 
absorption, and scattering of radiation by single atoms as, e.g., exhibited 
previously by Nakajima, (8~ but there are also terms representing photo- 
ionization, simultaneous interaction of two or more colliding atoms with 
radiation, etc. The derivation and discussion wilt be given elsewhere. For the 
present, we shall exhibit only the terms crucial for the effects we wish to 
discuss, and hence adopt the model Hamiltonian 

fh2k~ (ho% h2k2' ~ hckb~bka] 

+ ~ '  27r~'h~~176 b~abka(ao'ao § ~ a~a,aka,) (1) ka ckf~ a" 
where the allowed k values are determined by periodic boundary conditions 
for a macroscopic cubical volume f2, and ak refer to unexcited atoms, the 
aua to those excited to the lowest spin-singlet P state with excitation energy 
h~oo, and the bka refer to photons. The index ~ = 1, 2 labels the two transverse 
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polarization states; only excited atoms with transverse P orbitals are included 
since the longitudinal ones do not couple to the radiation field. The terms 
involving the P-state polarizability c~ arise from the term in the matter- 
radiation interaction linear in the vector potential A; we have retained only 
terms representing virtual excitation from and deexcitation back to the 
k = 0 condensate. The terms proportional to ~ ' =  2e2/meoJo 2 (me is the 
electron mass) are quadratic in A; we have retained only diagonal terms 
referring to the ground-state condensate and to the same excited states 
included in the A term. The 4He-atom annihilation and creation operators 
ak, ak*, aka, and ak*~ satisfy the usual Bose commutation relations and 
commute with the photon annihilation and creation operators bk~ and b~a, 
the algebraic complications associated with the internal structure of the ~He 
atoms having been transferred from the commutation relations to the 
Hamiltonian by an appropriate unitary transformation. (6,7> 

Consider a variational trial ground state coherent with respect to the 
ground-state condensate and also with respect to possible momentum-q 
condensates of 4He atoms and photons: 

[~bo) = coast x exp(~/n%ao*) e x p ( - V / n ~ a a ~ a )  

x exp (~r ~ flab~a) 10) (2) 

Here n is the number of 4He atoms and ~0, ~a, ]3~, and q are the variational 
parameters. The expectation value of (1) in such a state yields 

nh'~176 .(1 + ~h'~176 = ~a [aa]2 + (z + 2rrpc~'z-1) ~ [/3al2 

- -  (i,rpoOl/2 Z- I/2 ~ (O~a*flACC 0 ..}. aO*/~A*r ) ( 3 )  
A 

where p = n/f~ = number density of atoms, z = cq/o~o, and use has been 
made of the atom-number conservation condition 

I 01 = + = 1 (4) 
A 

The energy expression (3) exhibits the usual high degeneracy associated with 
the gauge transformation of the first kind % ~ ~oe ~~ %--> =ae ~~ as well as 
a twofold polarization degeneracy associated with rotations ~ --> ~, cos 7 + 
e2 sin y, /3~-->/3~ cos y +/32 sin y, etc., and a directional degeneracy with 
respect to the direction of q. This latter degeneracy is, strictly speaking, 
partially lifted by the discreteness of k space. Of these three types of de- 
generacy, the one that seems to us to be a candidate for the discrete sym- 
metry-related degeneracy sought by Tisza m is the twofold polarization 
degeneracy. 
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Choosing new real, positive variables x0, xl ,  Yl such that % = Xo, 
~zl = x l ,  fil = z l /2Y l ,  ~2 =/32 = 0, one has 

E0 (1 + h~~176 2 
nhco ~ = ~ - ~ - ~ j x l  + (z  2 + 2rrp~z')yl 2 - 2(zrp~x)ll2xiyl(1 - x12) 112 (5) 

The minimum with respect to z occurs at z -+ 0 + ,  and minimization of the 
resultant expression with respect to Yl after eliminating Xo via (4) yields 

�9 (zrPa)l/-'-----2 x l ( 1  - x l 2 )  1/2 ( 6 )  
Yl = 2~'pd 

and 

n h w o -  ~ ] x l  + ~ x l  (7) 

We must now distinguish two cases. I f  ~ < 2d,  then the minimum 
occurs at xl 2 = 0, corresponding to the normal Bose condensate solution. 
On the other hand, if ~ > 2d  > 0, then the minimum is at 

- 2 ~ '  E 0  = ( ~ - 2 ~ ' )  2 
x12 = 2~z ' nhcoo 8~d (8) 

In order to correctly elucidate the structure of the corresponding condensate, 
one must recognize that the minimum allowed value of z is not zero, but 
Cqmin/O)o, where qmin = 2~rO-1/3, since photons of  zero wave vector do not 
exist. One then finds the mean occupation numbers of the condensates in the 
variational ground state to be 

+ 2 d  ~ - 2 ~ '  
(ao*a0)0 = nXo 2 = n 2------ff~' ( a ~ l a q l ) o  = n x l  2 = n 2------d-- 

(b~lbq~)o = z ~ n y l  2 = n 2/3 2zrcPl/3 c~2 - 4(cd)2 
OJo 16zrp~( ,)2 (9) 

This may be called a superradiant phase since the coherent virtual photon 
mode has an occupation O(n  213) far in excess of the normal O(1) mode 
occupations; however, it is a less extreme condensation than the macroscopic 
O(n)  population of the superradiant mode in the Dicke model. (2-5) One may 
picture this solution as representing a situation in which a highly occupied 
virtual photon mode of macroscopic wavelength f2 ~/3 interacts with zero- 
momentum ground-state condensate atoms, leading to virtual excitation of a 
fraction n x l  2 of them into an "exciton condensate" mode of the same 
macroscopic wavelength. It  is perhaps more correct to regard this exciton 
condensate and the photon condensate as together constituting a hybrid 
condensate of  wave vector qm~, in which momentum is passed back and 
forth between virtually excited 4He atoms and photons;  when a virtually 
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excited atom passes its momentum to the photon condensate, it drops back 
into the atomic ground-state zero-momentum condensate. 

The analysis thus far presented breaks down at the exceptional point 
~' = 0; however, a more careful treatment of the limit z -+ 0 + in that case 
shows that Eo and the occupations all remain finite, but with Eo = - O(n5/8), 
(b*qlbql)o = O(n2), and (ao*ao)o and (a*qlaq~)o both equal to (1/2)n. This is a 
highly pathological "hyperradiant" state and will not be discussed further 
since the case ,z' = 0 is not physically realizable. 

Although our results were derived from a variational Ansatz (2), we 
believe that they represent the exact ground state o f  the model Hamiltonian 
(1) in the thermodynamic limit n -+ co, f~ --~ 0% n/O -+ ,o, 0 < p < oo. 

The analysis is easily extended to nonzero temperature by the Gibbs-  
Bogoliubov variational principle (see, e.g., Ref. 9). Performing the unitary 
transformation 

U -  lao U = ao + V'n c~0, U -  laqa U = aqa + ~ /n  ~a, 

U-lbq~U = b.~ + Vn ~ (10) 

on the condensed-mode operators, one separates the transform of (1) as 
follows: 

U - 1 H U =  Ho + V 

Fh2k2 (h~o h2k2\ 
1to = Wo + ~ [--j--~ak*ak + ~ +-~-~-m)a~aakA 

where the thermal average of Vin the ensemble determined by H0 is negligible 
in the thermodynamic limit, o 

h~176 2mc~ , {z 2rrpcdz-1 [1 [/T]3'2]~ nhoJ oW~ - - (  1 + \ ~ ]  J J ~  I/3at2 + + 

- (~p~)l~z- ~ ~ (=a*B~o + ~o*/3a*~) (12) 
A 

and ]~ol 2 has been eliminated by the atom-number conservation condition 

I.ol ~ + ~ I~.l ~ = 1 - \TJ (13) 
A 

Here T~ is the Bose-Einstein condensation temperature determined by the 
condition 

f {[exp(fl~hZk2/2m) - ] 1 

+ [exp(fl~hwo)exp(floh2k2/2m) - 1] -1} dak = 8rr3p (14) 
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with tic = (kBTc)-1;  T~ differs from the usual ideal Bose gas condensation 
temperature only by an utterly negligible amount of order T~ exp(-htoo/kBT~), 
where htoo/ksT~ ~ 10 5. The expressions (12) and (13) are obvious generaliza- 
tions of (3) and (4). The free energy of Ho is 

F0 = Wo + (f~/8~rafl)f ln[1 - exp( - f lh2k2 /2m)]  dak  

(2f~/8rrafl) f ln[1 - exp(-fihtoo) exp( - f ih2k2 /2m)]  dak  + 

+ (2f~/Srrafi) f ln[1 - e x p ( - f i h c k ) ]  dak  (15) 

This is the Helmholtz free energy since the atom-number conservation condi- 
tion has been introduced explicitly rather than indirectly via a chemical 
potential. The second term in (15) is the contribution of noncondensed 
ground-state atoms and plays an essential role in the temperature dependence. 
The third is the contribution of noncondensed excited-state atoms and is 
negligible at the temperatures of interest because of the aforementioned 
factor exp(-htoo/kBT). The fourth term is the contribution of real photons 
and is likewise negligible. On the other hand, the coherent contributions of 
condensed virtually excited atoms and condensed virtual photons are impor- 
tant and are included in Wo. 

The minimization of Wo with respect to q (hence z), ao, %, and fl~ subject 
to the constraint (13) is carried out as was the minimization of (3), so we 
shall only state the results. If a < 2a', the minimum occurs at aa = fia = 0, 
corresponding to the normal condensed phase of the ideal Bose gas. If  
c~ > 2a' > 0, then the minimum occurs at nonzero values of the exciton 
condensate and photon condensate parameters, the minimum value of Wo is 

nhtoo = 8aa' ~1 - \TT] ] (16) 

and the condensate occupations are 

a + 2 a ' [  [T'~a'2 l 
(ao*ao)o = nxo = = n ~ ~1 - I T J  ] 

o -  1 (a~la,~l)o = nx l  2 = n - " - ~ 7 ~  ~ 1 - ~-~] ] 

n2fa 2rrcp lm a 2 _ 4(a')2 
<b~lbql>o = zmmnyl 2 = t~ 16rrp~(a,)2 (17) 

Note that the photon condensate occupation (b*q,bq,)o for 0 < T < Tc is the 
same as the ground-state expression (9); accordingly, this occupation suffers 
a discontinuity at the transition temperature but then remains constant for 
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0 ~< T < To. On the other hand, the atomic ground-state condensate occupa- 
tion (ao*ao)o and exciton condensate occupation (a*qlaql)o vary with tem- 
perature in the same way as the normal Bose condensate occupation of the 
ideal Bose gas. All of the occupations (17) are discontinuous at c~, c,' = 0 if 
one "turns on"  c~ and ~' in such a way that their ratio remains constant. 

If  one drops the negligible second and third integrals in (15), then the 
Helmholtz free energy Fo reduces to the sum of Wo and the ideal Bose gas 
free energy'. The various thermodynamic functions are then easily evaluated. 
For example, the specific heat at constant volume is found to be 

k"~- = '  32 kBT~ as \ E l  + 1.925 (18) 

This is highly pathological, the negative term overwhelming the positive 
ideal Bose gas term since hwo/kBT~ ~ 105. Similarly, the pressure is found to 
be negative and larger than the positive ideal Bose gas expression by a factor 
of order hwo/kBTc, and the ground-state energy and free energy themselves 
are much too negative (~  -hoJ0). These pathological results signal the failure 
of our implicit assumption of a single homogeneous phase. In fact, the model 
(1) is unstable for T < Tc against phase separation into a very high-density 
liquid phase and a low-density gas phase. It might be amusing to investigate 
this phase separation in detail, but we shall not do so, since such a collapse 
would not occur in a more realistic model including repulsive interactions. 
The actual binary collision matrix elements <6'7> are of the right order of 
magnitude to prevent Such a collapse, but their consistent inclusion would 
require a more refined method than the simple variational treatment used 
here. For example, one might try to extend the Bogoliubov model by inclusion 
of appropriate atom-radiation interaction terms. The dipolar interaction 
should probably also be included explicitly (rather than as an effective poten- 
tial between ground-state atoms), since it plays an important role in the 
theory of excitons, our crude treatment here already indicating the possible 
importance of excitonic effects. The repulsive interactions might appro- 
priately be treated by a nonperturbative method, as, e.g., in the Bogotiubov 
model or the Lee-Huang-Yang theory of the hard-sphere Bose gas. 

In view of the drastically simplified nature of the model (1), one should 
be cautious about drawing any firm conclusions with regard to real liquid 
~He, but we regard the results obtained here as a motivation for investigating 
the possibility of such superradiant effects in more realistic models. If one 
literally interprets ~ in (1) as the polarizability of the lowest P state (of 
excitation energy hco0), then the f-sum rule requires ~ < c~' = 2e2/m~wo 2, so 
that the condition c~ > 2~' for superradiance is violated, in analogy with a 
previous observation <I~ regarding the Dicke model. Such a conclusion does 
not, however, exclude the possibility of a superradiant transition in a more 
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realistic model. The virtual transitions involved are highly nonresonant 
(involving photons of energy hcq~ln <<< h~o0), so that a realistic model should 
allow for excitation of all the higher excited states having nonzero dipole 
matrix elements to the g round  state. These need not contribute to the 
Hamiltonian in the same way that they do to the f-sum rule, so that one 
cannot make a rigorous prediction of the relative contribution of the A and 
A 2 terms to a realistic model of superradiance on the basis of the f-sum rule. 

If  superradiance of a photon mode of macroscopic wavelength were to 
occur in real superfluid liquid 4He (albeit in an attenuated form due to 
the presumably very small Bose-condensed fraction), it would provide an 
"effective field" to align the polarizations of virtually excited atoms, thus 
converting the atomic excited-state degeneracy into a discrete degeneracy of 
the macroscopic system of the type required for a correct treatment of the 

transition according to Tisza's theory. (1~ Of course, it remains to be seen 
whether such a program can be successfully carried out. 

Such superradiance in liquid 4He might also lead to some bizarre effects 
not yet observed, e.g., an anomalous electromagnetic response in the neighbor- 
hood of the wavelength of the superradiant mode and a sensitivity of the 
~, anomaly in the specific heat to an externally applied field of the same 
wavelength (in the microwave region). 

A superradiant transition involving nonlocalized atoms, of the type we 
have discussed, bears a considerable resemblance to the pion condensation 
transition, which has been investigated ~11,12) as a possible phenomenon in 
neutron star matter and abnormally dense nuclear matter formed in high- 
energy collisions of heavy nuclei. It is amusing to note that also in that case 
the condensed phase was found to be unstable against collapse and this 
instability was attributed to an inadequate treatment of repulsive interactions. 
One essential difference is, however, that the pion condensation occurs at a 
finite q value rather than the infinitesimal value (corresponding to macro- 
scopic wavelength) that we have found in our superradiance model. Further- 
more, the presumed atomic Bose condensation in liquid *He furnishes a 
mechanism of enhancement of such a transition that is absent in a system of 
nucleons or other fermions. For this reason, superradiance is probably a 
more remote possibility in liquid 3He, although it might conceivably occur 
since the Cooper pairs of 3He atoms are believed to undergo condensations 
that have some similarity to Bose condensation. 
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